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Stationary-to-stationary solutions in relativity theory 

A Sackfield 
Trent Polytechnic, Nottingham, NG I 4BU, UK 

Received 14 November 1974 

Abstract. Stationary axially symmetric solutions claimed to be original by Kloster. Som 
and Das are in fact known. A technique for derivation of the class of solutions is given. 

1. Introduction 

In a recent paper Kloster er a1 (1974) display a number of very interesting results and 
theorems concerning the stationary gravitational field. However, in their specialization 
to axially symmetric stationary fields they claim discovery of a new class of solutions 
requiring fr- functionally dependent on w (terms defined below). This dependence 
however is precisely that required of the Ehlers (1965) solutions. We give a simple 
mapping for obtaining the Ehlers solutions from other known solutions. 

2. Field equations 

In its usual form the stationary axially symmetric metric may be written 

ds2 = -f - ' [eZk(dr2 + dz') + r2 d#'] +f(dt - w dc$)', (1) 

f, k and w being functions of r and z only. The resultant vacuum field equations forf 
and w are 

f V Z f =  ( ~ f ) ~ - f ~ r - * ( V w ) ~ ,  

f (w + w2 - r - w + 2vf. v w = o 
where subscripts 1 and 2 denote differentiation with respect to r and z respectively 
and V, V2 are the usual Euclidean operators in the flat background cylindrical coordinate 
system (r, 4 , ~ ) .  Oncefand w are determined the final field equations may be solved 
for k in terms of quadratures. 

Now the equations (2) have been recast (Ernst 1968) into the form 

f V 2 f  = (vf)2-(v5)z. ,f v2g = 2Vf. vg (3) 

f 'Vw = rfi ,,V( (4) 

f + r f - ' ,  w + it ( 5 )  

where 

and fi is a unit vector in the 4 direction. It  is then a remarkable fact that 
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maps (2)  into (3). Thus a solution (f, w) of (2) may be mapped into a solution (f, 5 )  of 
(3) and hence by (4) into a new solution of (2). Now it is well known (eg Sackfield 1971) 
that the imposition of a functional relationship between f and < implies the Papapetrou 
(1953) solutions. With this requirement the mapping ( 5 )  thus generates a new class 
with w a function of fr- : the Ehlers class. 
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